Stochastic Gradient Descent on a Portfolio Management Training Criterion Using the IPA Gradient Estimator
نویسندگان
چکیده
CIRANO Le CIRANO est un organisme sans but lucratif constitué en vertu de la Loi des compagnies du Québec. Le financement de son infrastructure et de ses activités de recherche provient des cotisations de ses organisations-membres, d'une subvention d'infrastructure du ministère de la Recherche, de la Science et de la Technologie, de même que des subventions et mandats obtenus par ses équipes de recherche. CIRANO is a private non-profit organization incorporated under the Québec Companies Act. Its infrastructure and research activities are funded through fees paid by member organizations, an infrastructure grant from the Ministère de la Recherche, de la Science et de la Technologie, and grants and research mandates obtained by its research teams. ASSOCIÉ AU :. Institut de Finance Mathématique de Montréal (IFM 2). Laboratoires universitaires Bell Canada. Réseau de calcul et de modélisation mathématique [RCM 2 ]. Réseau de centres d'excellence MITACS (Les mathématiques des technologies de l'information et des systèmes complexes) Les cahiers de la série scientifique (CS) visent à rendre accessibles des résultats de recherche effectuée au CIRANO afin de susciter échanges et commentaires. Ces cahiers sont écrits dans le style des publications scientifiques. Les idées et les opinions émises sont sous l'unique responsabilité des auteurs et ne représentent pas nécessairement les positions du CIRANO ou de ses partenaires. This paper presents research carried out at CIRANO and aims at encouraging discussion and comment. The observations and viewpoints expressed are the sole responsibility of the authors. They do not necessarily represent positions of CIRANO or its partners. Résumé / Abstract Dans cet article, nous jetons les bases pour l'apprentissage d'une stratégie de gestion d'un portefeuille de biens, de natures variées, et ne s'appuyant sur aucune supposition quant aux distributions des données financières. Ce modèle, basé sur l'utilisation d'un réseau de neurones, tente de capturer les tendances du marché. De plus, le modèle permet l'introduction d'un bruit stochastique au niveau des prix prévus par le réseau afin d'éviter les maxima locaux dans l'espace de décision. Dans ces conditions, nous démontrons que notre stratégie d'investissement suit un processus de décision markovien qui est presque sûrement lipchitzien en ses paramètres. Ainsi, l'estimateur du gradient IPA, obtenu ici par la méthode classique de rétropropagation, peut être utilisé pour approcher, par une descente de gradient, un maximum local de notre critère d'apprentissage, le Sharpe ratio. In this paper, we set the basis for learning a multitype assets portfolio management technique …
منابع مشابه
Identification of Multiple Input-multiple Output Non-linear System Cement Rotary Kiln using Stochastic Gradient-based Rough-neural Network
Because of the existing interactions among the variables of a multiple input-multiple output (MIMO) nonlinear system, its identification is a difficult task, particularly in the presence of uncertainties. Cement rotary kiln (CRK) is a MIMO nonlinear system in the cement factory with a complicated mechanism and uncertain disturbances. The identification of CRK is very important for different pur...
متن کاملPerturbation Analysis and Optimization of Stochastic Hybrid Systems
We present a general framework for carrying out perturbation analysis in Stochastic Hybrid Systems (SHS) of arbitrary structure. In particular, Infinitesimal Perturbation Analysis (IPA) is used to provide unbiased gradient estimates of performance metrics with respect to various controllable parameters. These can be combined with standard gradient-based algorithms for optimization purposes and ...
متن کاملInvestigations on hessian-free optimization for cross-entropy training of deep neural networks
Context-dependent deep neural network HMMs have been shown to achieve recognition accuracy superior to Gaussian mixture models in a number of recent works. Typically, neural networks are optimized with stochastic gradient descent. On large datasets, stochastic gradient descent improves quickly during the beginning of the optimization. But since it does not make use of second order information, ...
متن کاملHandwritten Character Recognition using Modified Gradient Descent Technique of Neural Networks and Representation of Conjugate Descent for Training Patterns
The purpose of this study is to analyze the performance of Back propagation algorithm with changing training patterns and the second momentum term in feed forward neural networks. This analysis is conducted on 250 different words of three small letters from the English alphabet. These words are presented to two vertical segmentation programs which are designed in MATLAB and based on portions (1...
متن کاملScalable Minimum Bayes Risk Training of Deep Neural Network Acoustic Models Using Distributed Hessian-free Optimization
Training neural network acoustic models with sequencediscriminative criteria, such as state-level minimum Bayes risk (sMBR), been shown to produce large improvements in performance over cross-entropy. However, because they entail the processing of lattices, sequence criteria are much more computationally intensive than cross-entropy. We describe a distributed neural network training algorithm, ...
متن کامل